If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-16H^2+81
We move all terms to the left:
-(-16H^2+81)=0
We get rid of parentheses
16H^2-81=0
a = 16; b = 0; c = -81;
Δ = b2-4ac
Δ = 02-4·16·(-81)
Δ = 5184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5184}=72$$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-72}{2*16}=\frac{-72}{32} =-2+1/4 $$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+72}{2*16}=\frac{72}{32} =2+1/4 $
| 202=-v+153 | | 18+d/24=21 | | -v+266=104 | | -18x+36=-9x-12 | | y/2+2=38 | | 294=200-w | | 6(7+x)=138 | | 5+1=-5x+10 | | 15x=8x+4 | | 5=5+r | | 16=v/5+10 | | 6(7x)=138 | | 28=3c-11 | | 73+x+74+37+x=180 | | 4x+7=2x-9 | | 4-7x=2(x-7) | | 1+x+4x=11+12x+-3 | | 0.3p+4.5=22.5 | | 1/5y-12=13 | | 9x-6+16x-4=90 | | 2s^2-9=5 | | 9x-6+16x-4=63 | | x+{=13}=-5 | | (x-3)/2=34 | | 13x-33+10=180 | | x+{-13}=-5 | | 18t-5=45 | | 180=x+2x-1+6x-8 | | 3(3y−4)= 33 | | 16x-4+9x-6=90 | | 2(6z−2)= 32 | | 4x+2=−14 |